Monday, 8 August 2022

Mathematics and the Probabilistic Nature of Quantum Objects

 

Mathematics and the Probabilistic Nature of Quantum Objects

Because many of the concepts of quantum physics are difficult if not impossible for us to visualize, mathematics is essential to the field. Equations are used to describe or help predict quantum objects and phenomena in ways that are more exact than what our imaginations can conjure.

Mathematics is also necessary to represent the probabilistic nature of quantum phenomena. For example, the position of an electron may not be known exactly. Instead, it may be described as being in a range of possible locations (such as within an orbital), with each location associated with a probability of finding the electron there.

Given their probabilistic nature, quantum objects are often described using mathematical "wave functions," which are solutions to what is known as the Schrödinger equation. Waves in water can be characterized by the changing height of the water as the wave moves past a set point. Similarly, sound waves can be characterized by the changing compression or expansion of air molecules as they move past a point. Wave functions don't track with a physical property in this way. The solutions to the wave functions provide the likelihoods of where an observer might find a particular object over a range of potential options. However, just as a ripple in a pond or a note played on a trumpet are spread out and not confined to one location, quantum objects can also be in multiple places—and take on different states, as in the case of superposition—at once.

Observation of Quantum Objects

The act of observation is a topic of considerable discussion in quantum physics. Early in the field, scientists were baffled to find that simply observing an experiment influenced the outcome. For example, an electron acted like a wave when not observed, but the act of observing it caused the wave to collapse (or, more accurately, "decohere") and the electron to behave instead like a particle. Scientists now appreciate that the term "observation" is misleading in this context, suggesting that consciousness is involved. Instead, "measurement" better describes the effect, in which a change in outcome may be caused by the interaction between the quantum phenomenon and the external environment, including the device used to measure the phenomenon. Even this connection has caveats, though, and a full understanding of the relationship between measurement and outcome is still needed.

No comments:

Post a Comment

little scientist

  Discover the mystery of science with Future Geniuses! Join Valentia, the little scientist, and her cat, Plank, as they learn why Plank can...